If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+18x=40
We move all terms to the left:
9x^2+18x-(40)=0
a = 9; b = 18; c = -40;
Δ = b2-4ac
Δ = 182-4·9·(-40)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-42}{2*9}=\frac{-60}{18} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+42}{2*9}=\frac{24}{18} =1+1/3 $
| 1/(4+x^2)=-1-|x2-4x+3| | | -((44)(36))/(25^2)+6+6=x | | 72a-40+40=72a | | X^2-6x-20=20 | | 2x2-9=-137 | | -(44x36)/(25^2)+6+6=x | | 20+5(2c-3)= | | 2z×z+2z+5=0 | | 8+8x=11x | | |y|=-18 | | 27x-265=5 | | n+6÷5=2 | | 3y^2-3y-429/4=0 | | 6(x+5)=41 | | 4x2+1=25 | | 3x+2x-45=15-10x+35 | | -(44(6)^2)/(25^2)+(6)+6=x | | (3x+5)(4x-1)=(6x-3)(2x+7) | | -(44(6)^2)/(25^2)+(6)+6=y | | x−0−=−4 | | 0.5x-2.5-x=1.5 | | 3x/4=7/8 | | 8=2h-2 | | 2/7c-1/14c=-3 | | -3k-8=5k | | (15x-13)+(8x+18)=90 | | 3+x/4=7/8 | | x−x−=−4 | | 35=7+r | | 15+x+x+x=51-x-x-x- | | 16=6+x/2 | | 10-j=14 |